
GEOMETRIC REPRESENTATION THEORY OF THE HILBERT SCHEMES

PART I

ALEXANDER TSYMBALIUK

Abstract. We recall the classical action of the Heisenberg algebra H on the usual and

equivariant homology of the Hilbert scheme of points on C2, due to Grojnowski-Nakajima.

1. Heisenberg algebra

In this section, we recall the definitions of the Heisenberg algebra and its Fock representation.
These will be the key algebraic objects appearing in the forthcoming discussion.

Definition 1.1. The complex Lie algebra H with a basis {an, n ∈ Z∗;h} and a Lie bracket

[am, an] = mδ0m+nh, [am, h] = 0 for all m,n ∈ Z∗,

is called the Heisenberg algebra (here Z∗ := Z\{0} and δji is the Kronecker delta function).

Let n+ be the span of {am}m>0, n− be the span of {am}m<0, and h be the span of h. Then
H = n− ⊕ h ⊕ n+. Analogously to the case of simple Lie algebras, an H-representation V is
called the highest weight representation of highest weight λ ∈ C if there exists v ∈ V such that

n+(v) = 0, h(v) = λ · v, U(H)(v) = V.

Our next result provides a classification for such H-representations:

Proposition 1.1. We have the following description of highest weight H-representations:
(a) Any highest weight representation of highest weight λ is a quotient of IndHn+⊕hCλ, where n+
acts trivially on Cλ, while h acts as a multiplication by λ.
(b) The representation IndHn+⊕hCλ can be realized as an H-representation Rλ on the space

C[x1, x2, . . .] with generators acting in the following way:

am 7→ Am = mλ∂xm , a−m 7→ A−m = xm, h 7→ H = λId, m > 0.

(c) The representations Rλ are irreducible for λ ̸= 0.

Exercise 1.2. Prove Proposition 1.1.

Definition 1.2. The representations Rλ are called the Fock modules over H.

The Fock representation Rλ has a basis consisting of the elements

xj11 x
j2
2 · · ·xjnn = aj1−1a

j2
−2 · · · a

jn
−n(1).

Define the degree of such a monomial as
∑n
k=1 kjk. Let R

λ
j be the subspace of Rλ spanned by

degree j monomials. Then Rλ =
⊕

j≥0R
λ
j and dim(Rλj ) = p(j)–the number of partitions of j.

Therefore the q-dimension of Rλ, defined by dimq(R
λ) :=

∑
k≥0 dim(Rλj )q

j , is equal to:

(1) dimq(R
λ) =

∞∏
j=1

1

1− qj
.
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2. Hilbert scheme of points

2.1. The convolution machinery.
Let us first recall the formalism of correspondences and convolutions in the general setting.

For a locally compact topological space X, let H∗(X) denote the usual homology groups, while
HBM
∗ (X) denote the Borel-Moore homology of X (that is, homology with compact support).
Let M1,M2 be oriented smooth manifolds of dimensions d1, d2, and let pi : M1 ×M2 → Mi

be the natural projections. Suppose Z is an oriented submanifold Z ⊂M1 ×M2 such that the
projection Z →M2 is proper. Then the fundamental class [Z] ∈ HBM

∗ (M1×M2) defines a linear
operator [Z] : HBM

j (M1) → HBM
j+dimZ−d1(M2), by [Z](γ) = p2∗(p

∗
1γ ∩ [Z]) for γ ∈ HBM

∗ (M1).

When viewed as an operator on (Borel-Moore) homology groups, we call [Z] a correspondence.
Using the Poincaré duality, we get the adjoint operator [Z]∗ : Hj(M2) → Hj+dimZ−d2(M1),
which can be formally defined by a similar formula [Z]∗(γ) = p1∗(p

∗
2γ ∩ [Z]) for γ ∈ H∗(M2).

Let Z1 ⊂M1 ×M2, Z2 ⊂M2 ×M3 be the subvarieties such that both projections Z1 →M2

and Z2 → M3 are proper. Then the operators [Z1] : HBM
∗ (M1) → HBM

∗ (M2), [Z2] :
HBM
∗ (M2) → HBM

∗ (M3) are defined. Their compositionHBM
∗ (M1) → HBM

∗ (M2) → HBM
∗ (M3)

is a correspondence given by the so called convolution class:

[Z1] ⋆ [Z2] := p13∗(p
∗
12[Z1] ∩ p∗23[Z2]) ∈ HBM

∗ (Z1 ◦ Z2),

where Z1 ◦ Z2 := p13(p
−1
12 (Z1) ∩ p−123 (Z2)) ⊂ M1 × M3 (we use pij to denote the projection

M1×M2×M3 →Mi×Mj). Note that the projection Z1 ◦Z2 →M3 is proper and so [Z1]⋆ [Z2]
is well-defined. We also get the composition [Z1]

∗ ⋆ [Z2]
∗ : H∗(M3) → H∗(M1) in a similar way.

Remark 2.1. All the above constructions also work for any K ∈ HBM
∗ (Z) instead of [Z].

2.2. Correspondences Zα[i].
Let X be a quasi-projective surface (our main example is X = C2), and X [n] the Hilbert

scheme of n points in X. For i > 0, consider cycles Z[i] ⊂
⊔
nX

[n] ×X [n+i] ×X defined by

Z[i] =
⊔
Zn[i], Zn[i] :=

{
(J1, J2, x) ∈ X [n] ×X [n+i] ×X | J1 ⊃ J2, supp(J1/J2) = {x}

}
.

Let π : Z[i] → X be the projection to the last factor.
We also define Zn[−i] ⊂ X [n] ×X [n−i] ×X (n ≥ i) and π : Zn[−i] → X in a similar way.

Exercise 2.1. The dimension of Zn[i] is given by dimC(Z
n[i]) = 2n+ i+ 1.

Remark 2.2. In all such dimension counting arguments we need to know dimC s
−1(n[x]) = n−1

for any point x ∈ C2, where s : (C2)[n] → Symn(C2) is the Hilbert-Chow map.

Consider the homology classes α ∈ HBM
∗ (X), β ∈ H∗(X) and let p12 : Z[±i] → X [n∓i]×X [n]

be the projection to the product of the first two factors. We define

Zα[i] := p12∗(π
∗α ∩ [Z[i]]), Zβ [−i] := p12∗(π

∗β ∩ [Z[−i]]), i > 0.

These should viewed as Zα[i], Zβ [−i] ∈
∏
nH

BM
∗ (X [n∓i] ×X [n]).

Remark 2.3. The projection p12 is proper, so p12∗ is well-defined.

Applying the machinery of Section 2.1 to the cycles Zα[i], Zβ [−i], we get the correspondences
H∗(X

[n]) → H∗(X
[n∓i]). Our next remark provides more details on this construction.

Remark 2.4. The projections p13 : Zn[i] → X [n] ×X and p2 : Zn[i] → X [n+i] are proper. They

induce the correspondences H∗(X
[n] × X)

ϕ−→ H∗(X
[n+i]), H∗(X

[n+i])
ψ−→ H∗(X

[n] × X).
Then Zβ [−i](u) = ϕ(u ⊗ β), Zα[i](v) = ⟨ψ(v), 1 ⊗ α⟩ for u ∈ H∗(X

[n]), v ∈ H∗(X
[n+i]). This

argument also clarifies why α and β are chosen from the B-M homology or the homology groups.

According to Exercise 2.1, we have Zα[i] : H2n+k(X
[n]) → H2(n−i)+k+degα−2(X

[n−i]).
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2.3. Main result.
Let M be the direct sum of the homology groups M :=

⊕
n≥0H∗(X

[n]). Then we get the

operators Zα[i], Zβ [j] ∈ End(M).

Theorem 2.2. [N, Theorem 8.13] The following relation holds:

Zα[i]Zβ [j]− (−1)degα deg βZβ [j]Zα[i] = (−1)i−1iδ0i+j⟨α, β⟩ IdM ,
where ⟨α, β⟩ ∈ C is defined by ⟨α, β⟩ := pX∗(α ∩ β) with pX : X → pt.

Corollary 2.3. If degα deg β is even then the operators qβ [−i] := Zβ [−i], qα[i] := (−1)i−1Zα[i]
define an H-action on M of central charge ⟨α, β⟩.

For X = C2, up to proportionality there is only one nontrivial choice of such α and β:
α = [C2], β = [pt]. Let M ′ ⊂ M be a submodule M ′ = H(1), where H0(X

[0]) ≃ C · 1. Since
Zα[i](1) = 0 for i > 0, M ′ is isomorphic to the Fock module over H.

According to [N, Section 5], the q-dimension ofM equals1
∑
n≥0 q

n dimH•(X
[n]) =

∏
j≥1

1
1−qj .

An easy way to see this is to use a contractable action of the one-dimensional subtorus T1 ⊂ T
on X [n] (e.g. T1 = {tN , tN+1} for N > n). This yields a cell-decomposition of X [n] with the
number of cells equal to the number of fixed points, i.e., the number of size n Young diagrams.

Comparing this to the formula (1), we get

Theorem 2.4. The representation M is the Fock module over H.

Remark 2.5. For general X, one incorporates all choices of α, β into an action of the Heisenberg
superalgebra A(V ), corresponding to the super vector space V = Heven(X) ⊕Hodd(X). Same
argument proves that M is the Fock module over A(V ) (see Appendix A).

2.4. Baby example of Theorem 2.2.
Let us consider the first nontrivial example: i = 1, j = −1 for α = [X], β = [x0]. We verify

Zα[1]Zβ [−1]−Zβ [−1]Zα[1] = Id when viewed as operators on H0(X
[n]). Since H0(X

[n]) is one

dimensional, it suffices to check the above for the fundamental class of any J0 ∈ X [n]. A generic
J0 can be identified with J0 = {x1, . . . , xn} for n pairwise distinct points x1, . . . , xn ∈ X\{x0}.

When applying Zβ [−1] to J0 we just get an ideal corresponding to {x0, x1, . . . , xn}. Next,
the correspondence Zα[1] deletes one of the points so that

Zα[1]Zβ [−1](J0) = {x1, . . . , xn}+
n∑
i=1

{x0, x1, . . . , x̂i, . . . , xn},

where x̂i means that xi is missing. Analogously we get:

Zβ [−1]Zα[1](J0) =
n∑
i=1

{x0, x1, . . . , x̂i, . . . , xn}.

Therefore, we indeed have (Zα[1]Zβ [−1]− Zβ [−1]Zα[1])(J0) = J0.

2.5. Sketch of the proof of Theorem 2.2.
We outline only the main ingredients in the proof of Theorem 2.2. There are three cases to

be considered: i, j > 0, 0 > i, j, and i > 0 > j. We will discuss i, j > 0 now (the case i, j < 0
is analogous), while i > 0 > j is considered in Appendix B.

For i, j > 0, the composition of correspondences Zn−i−jα [i]Zn−jβ [j] is given by the convolution

Zn−i−jα [i] ⋆ Zn−jβ [j] = p13∗(p
∗
124[Z

n−i−j [i]] ∩ π∗1(α) ∩ p∗235[Zn−j [j]] ∩ π∗2(β)),

1 For a general X, we have
∑

n≥0 q
n dimH•(X[n]) =

∏
j≥1

(1+qj)dimHodd(X)

(1−qj)dimHeven(X) ([GS] and [N, Section 6]).
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where p124, p235, p13, π1 := p4, π2 := p5 are the projections of X [n−i−j]×X [n−j]×X [n]×X×X
to the corresponding (product of) factors.

This class is set-theoretically supported at Zn−i−j [i] ◦ Zn−j [j] which is equal to

Z[i, j;n] = {(J1, J2, J3, x, y) | J1 ⊃ J2 ⊃ J3, supp(J1/J2) = {x}, supp(J2/J3) = {y}} .
Consider the stratification Z[i, j;n] = Z[i, j;n]1 ⊔Z[i, j;n]2 corresponding to x = y and x ≠ y.

Remark 2.6. It turns out that Z[i, j;n]2 is a good stratum (see Example 2.5), while Z[i, j;n]1
is a neglectable stratum, since it is of smaller dimension.

To be more precise, we have the following result:

Exercise 2.5. (a) p−1124(Z
n−i−j [i]) and p−1235(Z

n−j [j]) intersect transversely along Z[i, j;n]2.
(b) dimC Z[i, j;n]2 = dimC Z[i, j;n] = 2n− i− j + 2.
(c) p∗124[Z[i]] ∩ p∗235[Z[j]] is a degree 4n− 2i− 2j + 4 B-M homology class of Z[i, j;n].

Let Z̄[i, j] := Z[i, j]2. According to the above exercise, we have:

p∗124[Z[i]] ∩ p∗235[Z[j]] = [Z̄[i, j]] + ιij∗(γ) for some γ ∈ HBM
∗ (Z[i, j]1),

p∗124[Z[j]] ∩ p∗235[Z[i]] = [Z̄[j, i]] + ιji∗(γ
′) for some γ′ ∈ HBM

∗ (Z[j, i]1),

where ιij : Z[i, j;n]1 ↪→ Z[i, j;n], ιji : Z[j, i;n]1 ↪→ Z[j, i;n] are the strata inclusions.

It is easy to see that there exists an isomorphism Z[i, j;n]2
∼−→Z[j, i;n]2 interchanging π1, π2.

In other words, given an ideal J2 such that supp(J1/J2) = {x} ≠ {y} = supp(J2/J3) there exists
a unique ideal J ′2 such that J1 ⊃ J ′2 ⊃ J3 and supp(J1/J

′
2) = {y}, supp(J ′2/J3) = {x}.

It turns out that the remaining summands do not give any contribution:

Lemma 2.6. We have p13∗(π
∗
1(α) ∩ π∗2(β) ∩ ιij∗(γ)) = 0.

Combining this lemma with the above argument, we get:

Zβ [j]Zα[i] = (−1)degα deg βZα[i]Zβ [j].

Proof of Lemma 2.6.
Consider π : Z[i, j]1 → X defined by π = π1 = π2. By the projection formula, we have:

π∗1(α) ∩ π∗2(β) ∩ ιij∗(γ) = ιij∗(π
∗(α ∩ β) ∩ γ).

To calculate the push-forward of this class along p13, let us note that it factors through

Z[i, j;n]1
ϕij−→ Zn−i−j [i+ j]

p12−→ X [n−i−j] ×X [n].

Applying the projection formula again, we get:

p13∗ιij∗(π
∗(α ∩ β) ∩ γ) = p12∗(π

∗(α ∩ β) ∩ ϕij∗ιij∗(γ)),
where π on the right hand side denotes the projection Zn−i−j [i+ j] → X.

It remains to note that dimC(Z
n−i−j [i + j]) = 2n − i − j + 1, while ϕij∗ιij∗(γ) is a degree

2(2n−i−j+2) homology class of Zn−i−j [i+j]. Hence ϕij∗ιij∗(γ) = 0 and the result follows. �
In Appendix B we apply the same arguments to the case i > 0 > j:

◦ The summands corresponding to the stratum Z[i, j;n]2 can be handed in the same way.
◦ To deal with the summands coming from the homology classes of Z[i, j;n]1, we introduce an
auxiliary subvariety L ⊂ X [n−i−j] ×X [n] ×X playing the role of Zn−i−j [i+ j] from the above
proof. If j ̸= −i, the same dimension counting arguments apply to show that the corresponding
summands are zero. If j = −i, then the only irreducible component of L of the desired dimension
is △X[n] ×X. Therefore, the corresponding summand acts as a multiplication by a constant.
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3. Equivariant setting for X = C2

In this section we consider the simplest surface X = C2, but in the equivariant setting.

3.1. General results on equivariant (co)homology.
Let T := (C∗)r be the r-dimensional torus, VN := (CN+1)r–natural T -module with each C∗

acting on the corresponding copy of CN+1 by multiplication, and M a T -variety.
Let us recall the key results on equivariant (co)homology (see the seminar notes [M]):

• Define Hi
T (M) := lim

←−
Hi(MN ), where MN := (VN\{0})×T M .2

◦ For M = pt, we get H∗T (pt) ≃ C[a1, . . . , ar], where ai := lim
←−

c1(O(1)i). Actually, we have a

canonical identificationH∗T (pt) ≃ C[LieT ] (that is independent of the isomorphism T
∼−→(C∗)r).

◦ There is a cup product Hi
T (M)⊗Hj

T (M) → Hi+j
T (M).

◦ For any T -equivariant map f :M1 →M2, there is a pull-back map H∗T (M2) → H∗T (M1).
In particular, H∗T (M) is an algebra over H∗T (pt) ≃ C[a1, . . . , ar] (by considering M → pt).

◦ For any subtorus T ′ ⊂ T we have a pull-back homomorphism H∗T (M) → H∗T ′(M), induced
by the T/T ′-fibration M ×T ′ ET →M ×T ET .

In particular, for T ′ = {1} ⊂ T we get a natural homomorphism H∗T (M) → H∗(M).
◦ For a T -equivariant bundle E over M , define an equivariant Chern class ci(E) := lim

←−
ci(EN ).

ForM = pt, a T -equivariant vector bundle E overM is just a representation of T . Then ci(E)
is the i-th elementary symmetric function of weights of E, viewed as functionals LieT → C.
• Define HT,BM

i (M) := lim
←−

HBM
i+4N−4r(MN ) (the degree shift agrees with the Poincaré duality).

◦ The cap product on HBM
∗ (MN ) induces an H∗T (M)-module structure on HT,BM

∗ (M).

◦ For a smoothM , we define the equivariant fundamental class [M ] ∈ HT,BM
dimRM

(M) as lim
←−

[MN ].

◦ The Poincaré duality on MN induces the isomorphism Hi
T (M) ≃ HT,BM

m−i (M).

◦ For a proper f :M1 →M2, there is a push-forward map f∗ : H
T,BM
∗ (M1) → HT,BM

∗ (M2).

◦ Similarly to the cohomological case, we have a natural homomorphismHT,BM
i (M) → HBM

i (M).
• Finally, we define equivariant homology groups HT

i (M) as HT
i (M) := Hi

T (M)∗.

◦ For a smooth M , we have the cap product ∩ : HT,BM
i (M)⊗HT

j (M) → HT
i+j−dimRM

(M).
◦ Composing ∩ with push-forward to a point and using the Poincaré duality, we obtain

the intersection pairing ⟨·, ·⟩ : HT,BM
i (M)⊗HT

j (M) −→ HT
i+j−dimRM

(pt) ≃ HdimRM−i−j
T (pt).

• Let us define HT
∗ (M)loc := HT

∗ (M)⊗H∗
T (pt)Frac(H

∗
T (pt)). The inclusion ι :M

T ↪→M induces

ι∗ : H
T
∗ (M

T )loc
∼−→HT

∗ (M)loc.

This result is known as the localization theorem.
Consider the decomposition MT =

⊔
Mα into connected components. Let ια : Mα ↪→ M

be the natural inclusion, while Nα denotes its normal bundle. If M and Mα are both smooth,
then Poincaré duality induces a map ια∗ : HT

∗ (Mα) → HT
∗ (M). According to the Thom

isomorphism, the composition ι∗αια∗ is given by the cap product with an equivariant Euler class
e(Nα). The operator e(Nα) ∩ • is invertible in HT

∗ (Mα)loc; let
1

e(Nα) denote its inverse. The

following result is known as the Atiyah-Bott-Berline-Vergne fixed point formula:

pM∗(ω) =
∑
α

pα∗

(
1

e(Nα)
ι∗αω

)
, ω ∈ HT

∗ (M),

where pM , pα are the projections of M,Mα onto a point (assuming M is proper).

2 This definition is consistent with the usual one, since the universal T -bundle ET → BT is just the limit of

the T -bundles VN\{0} → (PN )r. Moreover, the sequence {Hi(MN )} stabilizes as N → ∞.



6 ALEXANDER TSYMBALIUK

3.2. Main result in equivariant setting.
Consider an action of the two dimensional torus T on X given by (t1, t2) · (x, y) = (t1x, t2y),

where x, y are the standard coordinates on C2. We have induced T -actions on X [n] and SnX,
so that the Hilbert-Chow morphism s : X [n] → SymnX is T -equivariant.

Constructions of the previous section provide correspondences

Zα[i] : H
T,BM
∗ (X [n]) → HT,BM

∗ (X [n−i]), Zβ [j] : H
T,BM
∗ (X [n−i]) → HT,BM

∗ (X [n])

for any α ∈ HT
∗ (X), β ∈ HT,BM

∗ (X).

Remark 3.1. One can alternatively work with HT
∗ , but then we should swap the homology

groups: take α ∈ HT,BM
∗ (X), β ∈ HT

∗ (X) (see Remark 2.4).

Let MT be the direct sum of the equivariant Borel-Moore homology groups:

MT :=
⊕
n≥0

HT,BM
∗ (X [n]).

The following result is a T -equivariant analogue of Theorem 2.2:

Theorem 3.1. For any α ∈ HT
∗ (X), β ∈ HT,BM

∗ (X), we have

[Zα[i], Zβ [j]] = (−1)i−1iδ0i+j⟨α, β⟩IdMT .

This theorem is proved in the same way as its non-equivariant analogue. One of the key

arguments on vanishing of some cycles remains the same, since HT,BM
i (M) = 0 for i > dimRM .

In other words, one can show that [Zα[i], Zβ [j]] = cTi,n⟨α, β⟩ Id for some cTi,n ∈ H∗T (pt). Taking

the non-equivariant limit, we find that cTi,n is given by the same formula as in the non-equivariant

setting: cTi,n = ci,n = (−1)i−1i.3

3.3. Young diagrams.
In this section we introduce some common notation for Young diagrams:

• For a Young diagram λ we use λ∗ to denote its conjugate.
• For a Young diagram λ we write λ = (1n12n2 · · · ), where ni = #{k : λk = i}.
• For a Young diagram λ its length l(λ) is defined by l(λ) = max{k : λk ̸= 0} = λ∗1.
• We say that λ ≥ µ iff |λ| = |µ| and λ1 + · · ·+ λi ≥ µ1 + · · ·+ µi for all i.
• We say that λ ≽ µ iff |λ| = |µ| and there exists i such that

λ1 + · · ·+ λi > µ1 + · · ·+ µi, while λ1 + · · ·+ λj = µ1 + · · ·+ µj for j < i.

• For a box � ∈ λ with coordinates (i, j) we define l(�) := λ∗j − i, a(�) := λi − j.

3.4. Fixed points of X [n].
Let us recall the bijection between the T -fixed points of X [n] and Young diagrams of size n.

For a Young diagram λ ⊢ n, the corresponding T -fixed point ξλ ∈ X [n] is defined by the ideal

Jλ := (yλ1 , xyλ2 , x2yλ3 , . . . , xλ
∗
1 ).

Note that the quotient Qλ := C[x, y]/Jλ has a basis consisting of the images of monomials

{xi−1yj−1|1 ≤ i ≤ l(λ), 1 ≤ j ≤ λi}.
The following formula for the T -character of the tangent space to X [n] at the fixed point {ξλ}
will be important for us (more details in our next class):

(2) ch Tξλ(X
[n]) =

∑
�∈λ

(
t
l(�)+1
1 t

−a(�)
2 + t

−l(�)
1 t

a(�)+1
2

)
.

3 We use the compatibility of the natural maps HT,BM
∗ (•) → HBM

∗ (•) with push-forwards and pull-backs.
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Appendix A. Heisenberg superalgebras

A.1. Clifford algebra.

Definition A.1. The associative algebra C generated by {an, n ∈ Z∗;h} with defining relations

{am, an} := aman + anam = |m|δ0m+nh, [am, h] = 0 for all m,n ∈ Z∗,
is called the Clifford algebra.

Let us consider subalgebras C−,C0,C+ of C defined by C± := C[a±1, a±2, . . .] and C0 := C[h].
The natural multiplication map m : C− ⊗ C0 ⊗ C+ → C is an isomorphism.

A C-representation V is called the highest weight representation of highest weight λ ∈ C if

∃ v ∈ V such that C+(v) = 0, h(v) = λ · v, C(v) = V.

It is clear that any highest weight C-representation is again a quotient of IndCC≥0
Cλ, where

C≥0 ⊂ C is the image of C0 ⊗ C+ under m. Moreover, the representation IndCC≥0
Cλ can be now

realized on the full exterior algebra Fλ := ∧•⟨dx1, dx2, . . .⟩ by the following operators:

am 7→ Am = mλ
∂

∂xm
y, a−m 7→ A−m = dxm∧, h 7→ H = λId, m > 0.

Notice that Fλ has a basis consisting of the elements

dxj1 ∧ dxj2 ∧ · · · ∧ dxjn = a−j1a−j2 · · · a−jn(1) (j1 > j2 > · · · > jn).

Define the degree of such a monomial as
∑
jk. Let Fλj be the subspace of Fλ spanned by

degree j monomials. Then Fλ =
⊕

j≥0 F
λ
j and the q-dimension of Fλ is given by

(3) dimq(F
λ) =

∏
j≥1

(1 + qj).

A.2. Heisenberg superalgebra.
The purpose of this section is to unify the parallel constructions for H and C.
Consider a finite dimensional super vector space V = V0⊕V1 with a non-degenerate bilinear

form (·, ·) satisfying (u, v) = (−1)deg u deg v(v, u) for homogeneous elements u, v ∈ V . Define a

super vector space Ṽ := V ⊗tC[t]⊕V ⊗t−1C[t−1] with a bilinear form (u⊗ti, v⊗tj) := iδ0i+j(u, v).

Definition A.2. The free Lie algebra on Ṽ ⊕ C · h with the defining relations

[ũ, ṽ] = (ũ, ṽ)h, [ũ, h] = 0, ũ, ṽ ∈ Ṽ ,

is called the Heisenberg superalgebra, and will be denoted by A(V ).

Analogously to H, we define subalgebras A(V )−,A(V )0,A(V )+ of A(V ) as those spanned
by V ⊗ t−1C[t−1], h, and V ⊗ tC[t], respectively. One can analogously introduce the notion of
the highest weight A(V )-representation of highest weight λ ∈ C.

If λ ̸= 0, RλV := Ind
A(V )
A(V )≥0

Cλ is the only such A(V )-representation. This representation is

called the Fock module over the Heisenberg superalgebra A(V ) and can be naturally realized
on the super-symmetric algebra S∗(V ⊗ t−1C[t−1]) ≃ S•(V0 ⊗ t−1C[t−1])⊗Λ•(V1 ⊗ t−1C[t−1]).
This vector space is graded by deg(V ⊗ t−n) = n. Combining formulas (1) and (3), we get

(4) dimq(R
λ
V ) =

∏
j≥1

(1 + qj)dimV1

(1− qj)dimV0
.

Remark A.1. According to Theorem 2.2, we get an action of the Heisenberg superalgebra A(V )
on M =

⊕
nH∗(X

[n]), where the super vector space V is given by V = Heven(X)⊕Hodd(X).
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Appendix B. Proof of Theorem 2.2 for i > 0 > j

In this case we can similarly define Z[i, j;n] ⊂ X [n−i−j] ×X [n−j] ×X [n] ×X ×X by

Z[i, j;n] = {(J1, J2, J3, x, y) | J1 ⊃ J2 ⊂ J3, supp(J1/J2) = {x}, supp(J3/J2) = {y}} .
This subvariety has a natural stratification Z[i, j;n] = Z[i, j;n]1 ⊔ Z[i, j;n]2 as before. Let

ιij : Z[i, j;n]1 ↪→ Z[i, j;n] be the strata inclusion, while Z̄[i, j] := Z[i, j;n]2. We have

Zα[i]Zβ [j] = p13∗([Z̄[i, j]] ∩ π∗1(α) ∩ π∗2(β)) + p13∗(ιij∗(γ1) ∩ π∗1(α) ∩ π∗2(β))

Zβ [j]Zα[i] = p13∗([Z̄[j, i]] ∩ π∗1(β) ∩ π∗2(α)) + p13∗(ιji∗(γ2) ∩ π∗1(β) ∩ π∗2(α))
for some γ1 ∈ HBM

∗ (Z[i, j;n]1), γ2 ∈ HBM
∗ (Z[j, i;n]1). Analogously to the case i, j > 0:

p13∗([Z̄[j, i]] ∩ π∗1(β) ∩ π∗2(α)) = (−1)degα deg βp13∗([Z̄[i, j]] ∩ π∗1(α) ∩ π∗2(β)).
Let us now compute the classes p13∗(ιij∗(γ1)∩π∗1(α)∩π∗2(β)) and p13∗(ιji∗(γ2)∩π∗1(β)∩π∗2(α)).

Consider π : Z[i, j;n]1 → X defined by π = π1 = π2. By the projection formula, we have:

ιij∗(γ1) ∩ π∗1(α) ∩ π∗2(β) = ιij∗(π
∗(α ∩ β) ∩ γ1).

Next, we analyze p134(Z[i, j;n]1). Let us first introduce L ⊂ X [m] ×X [n] ×X by

L =
{
(J1, J3, x) ⊂ X [m] ×X [n] ×X | J1 = J3 outside x, s(J1) = s(J3) + (m− n)[x]

}
,

where s denotes the Hilbert-Chow map as before. The following result is straightforward:

Lemma B.1. [N, Lemma 8.32] Decomposition of L into irreducible components is as follows:
(a) If m > n, then L has one irreducible component of complex dimension m+ n+ 1, while all
other components have smaller dimension.
(b) If m = n, then L has one irreducible component L0 = △X[n] × X of complex dimension
2n+2, n irreducible components L1, . . . , Ln of complex dimension 2n, while all other components
have smaller dimension.

Note that p134(Z[i, j;n]1) is contained in L with m = n− i− j. We have three cases:
◦ i + j < 0. Let f : L → X be the projection to the last factor. Note that the composition
p13 : Z[i, j;n]1 → X [m] ×X [n] factors through p13 : L→ X [m] ×X [n]. Therefore

p13∗(ιij∗(γ1) ∩ π∗1(α) ∩ π∗2(β)) = p13∗(p134∗ιij∗(γ1) ∩ f∗(α ∩ β)).
Applying Lemma B.1, we get dimC L = 2n−i−j+1 which is less then the expected dimension.4

Hence p13∗(ιij∗(γ1) ∩ π∗1(α) ∩ π∗2(β)) = 0. Analogously p13∗(ιji∗(γ2) ∩ π∗1(β) ∩ π∗2(α)) = 0.
◦ i+ j > 0. This case is reduced to the previous by interchanging J1 and J3.
◦ i+ j = 0. This is the only case when the contribution might be nonzero.

Let j : L̇ := L\L0 ↪→ L be the natural inclusion. Analogous arguments establish

j∗p134∗(ιij∗(γ1) ∩ π∗1(α) ∩ π∗2(β)) = 0, j∗p134∗(ιji∗(γ2) ∩ π∗1(β) ∩ π∗2(α)) = 0.

Both p134∗ιij∗(γ1) and p134∗ιji∗(γ2) are degree 2(2n+2) = dimR L0 homology classes and so

p134∗ιij∗(γ1)− (−1)degα deg βp134∗ιji∗(γ2) = ci,n[L0] for some ci,n ∈ C.
Therefore:

p12∗((p134∗ιij∗(γ1)− (−1)degα deg βp134∗ιji∗(γ2)) ∩ π∗(α ∩ β)) = ci,n[△X[n] ] · ⟨α, β⟩.
Hence Zα[i]Zβ [−i] − (−1)degα deg βZβ [−i]Zα[i] = ci,n⟨α, β⟩ IdM . It was first proved in [ES]

that ci,n = (−1)i−1i (see also [N, Section 9]).

4 Notice that p134∗ιij∗(γ1) is a degree 2(2n− i− j + 2) homology class of L and, therefore, must be zero.
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