GEOMETRIC REPRESENTATION THEORY OF THE HILBERT SCHEMES
PART 1

ALEXANDER TSYMBALIUK

ABSTRACT. We recall the classical action of the Heisenberg algebra H on the usual and
equivariant homology of the Hilbert scheme of points on C2, due to Grojnowski-Nakajima.

1. HEISENBERG ALGEBRA

In this section, we recall the definitions of the Heisenberg algebra and its Fock representation.
These will be the key algebraic objects appearing in the forthcoming discussion.

Definition 1.1. The complex Lie algebra H with a basis {a,,n € Z*; h} and a Lie bracket
[am,h] =0 for all m,n € Z",

is called the Heisenberg algebra (here Z* := Z\{0} and &7 is the Kronecker delta function).

[am,an] = m69n+n

Let ny be the span of {a,, }m>0, n— be the span of {a,, }m<o, and b be the span of h. Then
H=n_dHhdn,. Analogously to the case of simple Lie algebras, an H-representation V is
called the highest weight representation of highest weight A € C if there exists v € V such that

ny(v) =0, h(v)=A-v, UFH)(v)=V.
Our next result provides a classification for such H-representations:

Proposition 1.1. We have the following description of highest weight H-representations:
(a) Any highest weight representation of highest weight X is a quotient of Indii@b((h, where ny
acts trivially on Cy, while h acts as a multiplication by .
(b) The representation Indgi@h([b\ can be realized as an H-representation R on the space
Clz1, 22, . ..] with generators acting in the following way:
O = Ay, =m0y, Gem — Ay =2, h— H = Ald, m > 0.
(c) The representations R* are irreducible for X # 0.
Exercise 1.2. Prove Proposition 1.1.

Definition 1.2. The representations R* are called the Fock modules over J.

The Fock representation R* has a basis consisting of the elements
-al" (1).

n

J1..92 . 0n —
ey xlr =a

J11 j22 .
Define the degree of such a monomial as Y ,_; kji. Let R’\ be the subspace of R* spanned by
degree j monomials. Then R* = @, R} and dim(R}) = p(j)-the number of partitions of j.

Therefore the ¢-dimension of R, deﬁned by dlmq(R/\) 2 k>0 dlm(R)‘)q] is equal to:

(1) dim,(R*) = H

— i’
J:11 1
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2. HILBERT SCHEME OF POINTS

2.1. The convolution machinery.

Let us first recall the formalism of correspondences and convolutions in the general setting.
For a locally compact topological space X, let H,(X) denote the usual homology groups, while
HEM(X) denote the Borel-Moore homology of X (that is, homology with compact support).

Let My, M5 be oriented smooth manifolds of dimensions dy,ds, and let p; : My x My — M;
be the natural projections. Suppose Z is an oriented submanifold Z C M; x My such that the
projection Z — M is proper. Then the fundamental class [Z] € HPM (M; x M) defines a linear
operator [Z] : HPM(My) — HP i, 7—q, (M2), by [Z](7) = p2«(piy N [Z]) for v € HZM (My).
When viewed as an operator on (Borel-Moore) homology groups, we call [Z] a correspondence.
Using the Poincaré duality, we get the adjoint operator [Z]* : H;(M2) — Hjidim z—d, (M1),
which can be formally defined by a similar formula [Z]*(v) = p1«(p3y N [Z]) for v € H.(M>).

Let Z1 C My x My, Zy C Ms x M3 be the subvarieties such that both projections Z; — My
and Zo — Mj are proper. Then the operators [Z] : HEM(M;) — HEM(Ms), [Zs] :
HEM(My) — HBEM (Mj3) are defined. Their composition HZM (M) — HEM (My) — HEM (M3)
is a correspondence given by the so called convolution class:

[Z1] % [Za] := 13« (D}2]Z1] N p33[Z2]) € HEM (Z1 0 Z3),

where Z; o Zo = p13(pis (Z1) N pay (Z2)) € My x Mz (we use p;; to denote the projection
M, x My x Ms — M; x M;). Note that the projection Z; 0 Zy — Ms is proper and so [Z;]x[Zs]
is well-defined. We also get the composition [Z1]* x [Za]* : H.(M3) — H.(M;) in a similar way.

Remark 2.1. All the above constructions also work for any K € HBM (Z) instead of [Z].

2.2. Correspondences Z,i].
Let X be a quasi-projective surface (our main example is X = C?), and X[ the Hilbert
scheme of n points in X. For ¢ > 0, consider cycles Z[i] C | |, X[ % X+l % X defined by

zli) = || 2"l 27 = {(, Jaw) € X1 X % X |y Sy, supp(i /) = {a}}
Let 7 : Z[i] — X be the projection to the last factor.

We also define Z"[—i] ¢ X"l x X[~ x X (n >4i) and 7 : Z"[—i] — X in a similar way.
Exercise 2.1. The dimension of Z"[i] is given by dimc(Z"[i]) = 2n +i + 1.

Remark 2.2. In all such dimension counting arguments we need to know dim¢ s~!(n[z]) = n—1
for any point 2 € C?, where s : (C?)[" — Sym"(C?) is the Hilbert-Chow map.

Consider the homology classes « € HEM (X), 8 € H,(X) and let pyp : Z[+i] — X [nFil » x[n]
be the projection to the product of the first two factors. We define

Zo[i] := prax(ma N [Z[i]]), Zp[—i] := pra (7" BN [Z[=i]]), i > 0.
These should viewed as Z,[i], Zs[—i] € [[,, HEM (X" x X)),
Remark 2.3. The projection pio is proper, so pia.« is well-defined.

Applying the machinery of Section 2.1 to the cycles Z,[i], Zz[—i], we get the correspondences
H, (X)) = H,(X[F1). Our next remark provides more details on this construction.
Remark 2.4. The projections pis : Z"[i] — X[ x X and py : Z"[i] — X[** are proper. They
induce the correspondences H, (X[ x X) 5 H (X)), H, (X Ity N H. (XM x X).
Then Zg[—i](u) = ¢(u® B), Zali](v) = (b(v),1® ) for u € H (X" v € H (X)), This
argument also clarifies why « and g are chosen from the B-M homology or the homology groups.

According to Exercise 2.1, we have Z,[i] : Hop 1 (X™M) — HQ(n_i)+k+dega_Q(X[”*i]).
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2.3. Main result.
Let M be the direct sum of the homology groups M := @nZO H,(X™). Then we get the
operators Z,[i], Zz[j] € End(M).

Theorem 2.2. [N, Theorem 8.13] The following relation holds:
Zai)Zp[j] — (—1)8 48P Z5[j] Z,[i]) = (—1)""1id}y ;{a. B) Idar,
where (o, B) € C is defined by (a, B) := px«(an ) with px : X — pt.

Corollary 2.3. Ifdegadeg 3 is even then the operators qg[—i] :== Zg|—i], qali] :== (=1)""1Z,]i]
define an H-action on M of central charge {a, ).

For X = C2, up to proportionality there is only one nontrivial choice of such a and j3:
o = [C?],8 = [pt]. Let M' C M be a submodule M’ = H(1), where Ho(X[?)) ~ C- 1. Since
Zai](1) = 0 for 4 > 0, M’ is isomorphic to the Fock module over .

According to [N, Section 5], the g-dimension of M equals’ > n>0q" dim He (Xt = ;s 1%(#.
An easy way to see this is to use a contractable action of the one-dimensional subtorus Ty C T'
on XM (e.g. Ty = {tN,tN*+1} for N > n). This yields a cell-decomposition of X with the
number of cells equal to the number of fixed points, i.e., the number of size n Young diagrams.

Comparing this to the formula (1), we get

Theorem 2.4. The representation M is the Fock module over JH.

Remark 2.5. For general X, one incorporates all choices of «, 8 into an action of the Heisenberg
superalgebra A(V'), corresponding to the super vector space V' = Heyen(X) ® Hoqa(X). Same
argument proves that M is the Fock module over A(V) (see Appendix A).

2.4. Baby example of Theorem 2.2.

Let us consider the first nontrivial example: i =1, j = —1 for a = [X], 8 = [zg]. We verify
Za1)Z5[—1] — Z5[~1]Z4[1] = Id when viewed as operators on Hy(X™). Since Hy(X ™) is one
dimensional, it suffices to check the above for the fundamental class of any Jy € X", A generic
Jo can be identified with Jo = {x1,...,x,} for n pairwise distinct points 1, ..., z, € X\{zo}.

When applying Zg[—1] to Jy we just get an ideal corresponding to {x¢,z1,...,2,}. Next,
the correspondence Z,[1] deletes one of the points so that

Za[1Zp[-1)(J0) = {1, ..., 20} + Y {20, 21, ., Ty Tn},
=1

where Z; means that z; is missing. Analogously we get:

Zs[-1Za[1](J0) = Y {x0, 21, ., s Tn}-
i=1
Therefore, we indeed have (Z,[1]Z3[—1] — Zs[—1]Z4[1])(Jo) = Jo.

2.5. Sketch of the proof of Theorem 2.2.

We outline only the main ingredients in the proof of Theorem 2.2. There are three cases to
be considered: i,5 > 0, 0> 4,5, and i > 0 > j. We will discuss ¢,j > 0 now (the case 7,5 < 0
is analogous), while ¢ > 0 > j is considered in Appendix B.

For i, j > 0, the composition of correspondences Z7~¢~7[i] Zgij [7] is given by the convolution
Z3 i) % 27 () = prae(Diaal 27 ] N i (@) N phas (277 ] N 75 (8)),

(1+qj)dim H,qq(X)

321 (1o g7y T Foven(X) ([GS] and [N, Section 6]).

L For a general X, we have D onso ¢ dim He (XY =17
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where p1a4, Pass, P13, T1 := Pa, T2 := ps are the projections of X171 x X[=il x X X x X
to the corresponding (product of) factors.
This class is set-theoretically supported at Z"~¢~7[i] o Z"~J[j] which is equal to
Zli, gin] = {(J1, J2, J3,2,y) | J1 D J2 D J3, supp(J1/J2) = {z}, supp(J2/J3) = {y}}.
Consider the stratification Z[i, j;n] = Z[i, j;n]i U Z[i, j;n]2 corresponding to x = y and x # y.
Remark 2.6. Tt turns out that Z[i, j;nls is a good stratum (see Example 2.5), while Z[i, j;n];
is a neglectable stratum, since it is of smaller dimension.

To be more precise, we have the following result:

Exercise 2.5. (a) poy(Z"7179[i]) and pyss(Z777[j]) intersect transversely along Z[i, j;nls.
(b) dimg¢ Z[i, j;n]e = dime Z[i, j;n] =2n —i — 5 + 2.
(¢) PiaulZ[i)) N p3s51Z15]] is a degree 4n — 2i — 25 + 4 B-M homology class of Z[i, j;n].

Let Z[i,j] := Z[i, j]2. According to the above exercise, we have:
PiaalZ[i]) N p335(Z13]] = [Z[i, 51] + tijs (7) for some v € HIM (Z]i, j]1),
PiaalZ 1)) N335 [Z13]] = [Z15,1]] + 1ji(7') for some o € HPM(Z]j,4)1),

where ¢;; : Z[i,jin]y = Z[i,5;n], tj; 2 Z[j,i;n]1 — Z[j,1;n] are the strata inclusions.

It is easy to see that there exists an isomorphism Z[i, j; n]o— Z[j, i; n]2 interchanging 71, mo.
In other words, given an ideal J5 such that supp(J;/J2) = {z} # {y} = supp(J2/J3) there exists
a unique ideal J} such that Jy D Jj D J3 and supp(J1/J%) = {y}, supp(J5/J3) = {x}.

It turns out that the remaining summands do not give any contribution:

Lemma 2.6. We have p13.(7] (o) N 75 (5) Neije(y)) = 0.

Combining this lemma with the above argument, we get:
Zlj)Zali) = (—1) 48P Z,[i] Zg5].

Proof of Lemma 2.6.
Consider 7 : Z[i, j]1 — X defined by m = m; = m2. By the projection formula, we have:

1 (@) N3 (B) Nije (7) = tije (7" (@N B) N7).
To calculate the push-forward of this class along pi3, let us note that it factors through

Z[i, j;n) Pisy gn—i= Wi+ 7] 23 xr=i=al o x 0,

Applying the projection formula again, we get:

P13xtijs (T (N B) NY) = pra« (7" (@ N B) N Bijutijn (7)),

where 7 on the right hand side denotes the projection Z"~*=9[i 4 j] — X.
It remains to note that dime(Z"*7[i 4+ j]) = 2n — i — j + 1, while ¢;j.ti4(7) is a degree
2(2n—i—j+2) homology class of Z"~*~I[i+j]. Hence ¢;;xtij«(7) = 0 and the result follows. [

In Appendix B we apply the same arguments to the case i > 0 > j:
o The summands corresponding to the stratum Z[i, j;n]y can be handed in the same way.
o To deal with the summands coming from the homology classes of Z[i, j;n];, we introduce an
auxiliary subvariety L ¢ X[~ x X[ x X playing the role of Z"~*~I[i + j] from the above
proof. If j # —i, the same dimension counting arguments apply to show that the corresponding
summands are zero. If j = —i, then the only irreducible component of L of the desired dimension
is Axm X X. Therefore, the corresponding summand acts as a multiplication by a constant.
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3. EQUIVARIANT SETTING FOR X = C?
In this section we consider the simplest surface X = C2, but in the equivariant setting.

3.1. General results on equivariant (co)homology.
Let T := (C*)" be the r-dimensional torus, Vi := (C¥*!)"—natural T-module with each C*
acting on the corresponding copy of C¥*! by multiplication, and M a T-variety.
Let us recall the key results on equivariant (co)homology (see the seminar notes [M]):
o Define Hi.(M) := h;n H'(My), where My := (Vy\{0}) xp M.2
o For M = pt, we get H}(pt) ~ Claq,...,a,], where a; := h£1 c1(0(1);). Actually, we have a

canonical identification H(pt) ~ C[Lie T] (that is independent of the isomorphism 7—(C*)").
o There is a cup product Hi(M) ® Hj(M) — Hi (M).
o For any T-equivariant map f : My — My, there is a pull-back map Hj (M) — Hi(My).

In particular, H3(M) is an algebra over H}.(pt) ~ Claq, ..., a,] (by considering M — pt).
o For any subtorus 77 C T we have a pull-back homomorphism H} (M) — H}, (M), induced
by the T/T’-fibration M x1+ ET — M xr ET.

In particular, for 7" = {1} C T we get a natural homomorphism H7 (M) — H*(M).
o For a T-equivariant bundle E over M, define an equivariant Chern class ¢;(E) = h&n ci(EnN).

For M = pt, a T-equivariant vector bundle E over M is just a representation of T. Then ¢;(E)

is the i-th elementary symmetric function of weights of E, viewed as functionals LieT" — C.
e Define HiT’BM(M) = th HEM, (M) (the degree shift agrees with the Poincaré duality).

o The cap product on HEM (My) induces an H:(M )-module structure on H. P (M).

o For a smooth M, we define the equivariant fundamental class [M] € HifR%(M ) as lim [My].
—

o The Poincaré duality on My induces the isomorphism Hx (M) ~ H L ZM ().

o For a proper f : My — Mo, there is a push-forward map f, : Hf’BM(Ml) — H;F’BM(MQ).

o Similarly to the cohomological case, we have a natural homomorphism HZ-T’BM (M) — HPM(M).
e Finally, we define equivariant homology groups H} (M) as H] (M) := H%(M)*.

o For a smooth M, we have the cap product N : HiT’BM(M) ® H]T(M) — Hijji-j—dimugM(M)’

o Composing N with push-forward to a point and using the Poincaré duality, we obtain

the intersection pairing (-,-) : H; "M (M) ® HJT(M) — HiTH_dimRM(pt) ~ HEmE M (g,
e Let us define A/ (M)ioc := H (M)®p;: (pt) Frac(H7(pt)). The inclusion ¢ : M — M induces
Lot HE (M) 10c—HT (M )16c.

This result is known as the localization theorem.

Consider the decomposition MT = | | M, into connected components. Let 1o : My — M
be the natural inclusion, while N, denotes its normal bundle. If M and M, are both smooth,
then Poincaré duality induces a map tq« : HI(M,) — HI(M). According to the Thom
isomorphism, the composition ¢} ¢4« is given by the cap product with an equivariant Euler class
e(Ny). The operator e(N,) N e is invertible in HI (M )ioc; let e(Tb denote its inverse. The
following result is known as the Atiyah-Bott-Berline- Vergne fixed point formula:

1 * T
w) = g | ——w we H: (M
pM*( ) ~ pa <€(Na) « >7 *( )7
where pyr, po are the projections of M, M, onto a point (assuming M is proper).

2 This definition is consistent with the usual one, since the universal T-bundle ET — BT is just the limit of
the T-bundles Vy\{0} — (P¥)". Moreover, the sequence { H*(My)} stabilizes as N — oo.
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3.2. Main result in equivariant setting.

Consider an action of the two dimensional torus T on X given by (¢1,t2) - (z,y) = (t1,t2y),
where z,y are the standard coordinates on C2. We have induced T-actions on X[™ and S"X
so that the Hilbert-Chow morphism s : X" — Sym" X is T-equivariant.

Constructions of the previous section provide correspondences

Zoli) : HEPM(XI) — HEEM (X 73] - HEPM (X — HEEM ()
for any o € HT(X), 8 € HIPM(X).

Remark 3.1. One can alternatively work with HZI

., but then we should swap the homology
groups: take o € HI'PM(X), B € HT(X) (see Remark 2.4).

Let MT be the direct sum of the equivariant Borel-Moore homology groups:

M" =@ HPM (XM,
n>0
The following result is a T-equivariant analogue of Theorem 2.2:
Theorem 3.1. For any a € HT (X), 8 € HI"PM(X), we have
[Zali], Zslil) = (=1)" V07 (e, B)Td e

This theorem is proved in the same way as its non-equivariant analogue. One of the key
arguments on vanishing of some cycles remains the same, since H zT ’BM(M ) =0 for ¢ > dimg M.
In other words, one can show that [Z,[i], Zs[j] = c],,(c, ) Id for some ], € Hj.(pt). Taking
the non-equivariant limit, we find that cgjn is given by the same formula as in the non-equivariant
setting: ¢f,, = ¢;n = (=1)"" 1.2
3.3. Young diagrams.

In this section we introduce some common notation for Young diagrams:
e For a Young diagram A we use A* to denote its conjugate.
e For a Young diagram A we write A = (1™2"2 -..) where n; = #{k : \y = i}.
e For a Young diagram A its length [(\) is defined by I(A) = max{k : A\ # 0} = A}.
e We say that A > p iff |\ = |p| and Ay + -+ X > pg + -+ + p; for all i.
e We say that A = p iff |\| = |p| and there exists ¢ such that

M+ F A >+ 4y, while Ay + -+ X =pg + -+ py for j <.

e For a box [J € A with coordinates (7, j) we define [(0J) := Af — i, a(0) := A\; — j.
3.4. Fixed points of X",

Let us recall the bijection between the T-fixed points of X[™ and Young diagrams of size n.
For a Young diagram A - n, the corresponding T-fixed point £y € X" is defined by the ideal
Iy = (™ a2 2yt M),

Note that the quotient @y := C|x,y]/J) has a basis consisting of the images of monomials
{#" T <IN, 1 <5 < A}

The following formula for the T-character of the tangent space to X[™ at the fixed point {0}
will be important for us (more details in our next class):

(2) ch Tg,\ (X[n]) _ Z (tll(D)Jrlt;a(D) + t;l(D)tg(D)Jrl) .
Oex

3 We use the compatibility of the natural maps gIBM (o) — HEM (o) with push-forwards and pull-backs.
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APPENDIX A. HEISENBERG SUPERALGEBRAS

A.1. Clifford algebra.

Definition A.1. The associative algebra C generated by {a,,n € Z*; h} with defining relations
{am,an} := aman + anam = |m|521+nh7 [am,h] =0 forall m,neZ",

is called the Clifford algebra.

Let us consider subalgebras C_, Cp, C of € defined by C := Clat1,a4o,...] and Cy := C[h].
The natural multiplication map m : €_ ® €y ® €4 — C is an isomorphism.

A C-representation V is called the highest weight representation of highest weight A € C if

Jv eV suchthat Ci(v) =0, h(v)=A-v, Clv)=W

It is clear that any highest weight C-representation is again a quotient of Indg>0C A, Where
C>o C € is the image of €y ® C; under m. Moreover, the representation Indg>0C)\ can be now
realized on the full exterior algebra F* := A®(dx1, dxs,...) by the following operators:

Am — Ay = m)\iJ, a_m+— A_, =dxp, N\, h— H = Xd, m > 0.
0T,
Notice that F* has a basis consisting of the elements
dxj, Ndzj, N Ndrj, =a_ja_j,---a_j, (1) (j1>j2 > > jn)

Define the degree of such a monomial as 3" ji. Let F j)‘ be the subspace of F* spanned by
degree j monomials. Then F* = @ >0 Fj)‘ and the g-dimension of F* is given by
(3) dimy(F*) = [J(1 + ¢).

jz1
A.2. Heisenberg superalgebra.

The purpose of this section is to unify the parallel constructions for H and C.

Consider a finite dimensional super vector space V' = V; & V; with a non-degenerate bilinear
form (-,-) satisfying (u,v) = (—1)d°8%deev(y ;) for homogeneous elements u,v € V. Define a
super vector space V := V@tC[t|oV @t~ ' C[t~'] with a bilinear form (u@t’, v@t?) := 67, ; (u, v).
Definition A.2. The free Lie algebra on V & C - h with the defining relations

[u,v] = (u,v)h, [u,h] =0, u,v€ ‘77
is called the Heisenberg superalgebra, and will be denoted by A(V).
Analogously to H, we define subalgebras A(V)_, A(V ), A(V)1 of A(V) as those spanned

by V @ t~IC[t~!], h, and V ® tC][t], respectively. One can analogously introduce the notion of
the highest weight A(V')-representation of highest weight A € C.

If X\ #0, R = Indﬁgg;m@ A Is the only such A(V)-representation. This representation is
called the Fock module over the Heisenberg superalgebra A(V) and can be naturally realized
on the super-symmetric algebra $*(V @t 1C[t71]) ~ S* (Vo @t IC[t 1)) @ A* (Vi @ t~1C[t~1]).
This vector space is graded by deg(V ® t~™) = n. Combining formulas (1) and (3), we get
oy - T (L)
j=21
Remark A.1. According to Theorem 2.2, we get an action of the Heisenberg superalgebra A(V)
on M =@, H.(X™), where the super vector space V is given by V = Heyen(X) @ Hoga(X).



8 ALEXANDER TSYMBALIUK

APPENDIX B. PROOF OF THEOREM 2.2 FOR i > 0 > j
In this case we can similarly define Z[i, j;n] € X[~ x X["=3l x X[l x X x X by
Zli, jin] = {(J1, J2, J3,2,y) | J1 D J2 C Js, supp(J1/J2) = {z}, supp(J3/J2) = {y}}.
This subvariety has a natural stratification Z[i, j;n] = Z[i,j;n]1 U Z[i, j;n]2 as before. Let
tij : Z[i,jin|1 = Z[i, j;n] be the strata inclusion, while Z[i, j] := Z[i, j;n]o. We have
Zal)Z]5] = P13« (2], 5] N 7Y (@) N 75(B)) + prss (g (1) N 7Y (@) N 75(B))
Zp[5)Zali] = prac([Z]5,3]) N 71 (B) N 73 (a) + puss (i (v2) N} (B) N 75 ()
for some 1 € HEM(Z[i, jin)1),v2 € HEM(Z[j,i;n]1). Analogously to the case i,j > 0:
pis«([Z15, ] N 75 (B) Ny () = (=1)9B 48Py ([Z[i, 4)) N i () N3 (8)).

Let us now compute the classes piz«(tijx(71) N7} () N3 (8)) and pis« (i (v2) N7y (B) N3 ().
Consider 7 : Z[i, j;n]; — X defined by m = m; = mo. By the projection formula, we have:
tij«(71) Nt (@) N3(B8) = Liji (7 (N B) N ).

Next, we analyze pi34(Z[i, j;n]1). Let us first introduce L ¢ X[™ x X" x X by

L= {(Jl, Jy,z) © XM x XM 5 X | Jy = J5 outside z, s(J1) = s(J3) + (m — n)[a;]} ,
where s denotes the Hilbert-Chow map as before. The following result is straightforward:

Lemma B.1. [N, Lemma 8.32] Decomposition of L into irreducible components is as follows:
(a) If m > n, then L has one irreducible component of complex dimension m + n+ 1, while all
other components have smaller dimension.

(b) If m = n, then L has one irreducible component Lo = Axm X X of complex dimension
2n+2, n irreducible components L1, ..., L, of complex dimension 2n, while all other components
have smaller dimension.

Note that py34(Z]i, j;n]1) is contained in L with m =n — i — j. We have three cases:
oi+j < 0. Let f: L — X be the projection to the last factor. Note that the composition
pi3 : Z[i,j;n]1 — XM x X factors through pyz : L — X ™ x X", Therefore

P13« (Lije(v1) Ny (@) N3 (B)) = prz«(Prsaxtij«(v1) 0 [ (N B)).
Applying Lemma B.1, we get dim¢ L = 2n—4—j+1 which is less then the expected dimension.

Hence p13«(tij«(71) N 75 (o) N75(B)) = 0. Analogously pis«(tjix(v2) N7} (8) Nms () = 0.
o ¢+ 7 > 0. This case is reduced to the previous by interchanging J; and Js.

o7+ j = 0. This is the only case when the contribution might be nonzero.
Let j : L := L\Ly < L be the natural inclusion. Analogous arguments establish

T 1345 (Lije (y1) Ny (@) N 73 (B)) = 0, 5 p13ax(Ljix(v2) N7y (B) N5 (a)) = 0.
Both p13a«tij«(71) and p13actjic(v2) are degree 2(2n + 2) = dimg Ly homology classes and so

4

Praaxtije(71) — (—1)38 48Py 00 i (72) = ¢in[Lo] for some ¢, € C.
Therefore:
P12+ (Praastie (1) — (—1)98 4By 001t (12)) N7 (@ N B)) = cinDxim] - (@, B).

Hence Z,[i]|Zs[—i] — (—1)dee@deeB 75| Z,[i] = ¢; n{a, B) Idps. Tt was first proved in [ES]
that ¢; , = (—1)*"1i (see also [N, Section 9]).

4 Notice that P134xtij« (Y1) is a degree 2(2n — ¢ — j + 2) homology class of L and, therefore, must be zero.
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